Praktická aplikácia experimentálnych techník pri realizácii komplexných experimentov
Marek Mlkvik
marek.mlkvik@stuba.sk
František Világi
frantisek.vilagi@stuba.sk
Matej Vach
matej.vach@stuba.sk
Branislav Knížat
branislav.knizat@stuba.sk
STU v Bratislave
Strojnícka Fakulta
Vazovova 5
811 07 Bratislava
Abstract:
Due to the complex nature of machinery and equipment used in the power industry, it is necessary for students at technical universities to become familiar not only with the theoretical aspects of the design and operation of these devices, but also with the measurement of process variables and their correct interpretation. Therefore, the students of the Department of Energy Machinery at the Faculty of Mechanical Engineering of the Slovak Univeristy of Technology in Bratislava are introduced to the measurement technique and principles of measuring the operating parameters of machinery and equipment, not only in the field of thermal power engineering, but also in the field of hydropower engineering, pumping technology and fluid power, from the bachelor's degree onwards. For this reason, this textbook has been created, in which students can learn both the basics of planning experiments, but also less conventional experimental methods or the use of experimental in the verification of mathematical models.
DOI: 10.61544/GALH9701
Literatúra:
[1] F. Urban a P. Elesztos a R. Palenčar a Š. Emmer a K. Jelemenský a Knizat a ostatný. Modelovanie prirodzenej cirkulácie hélia v experimentálnej héliovej slučke. Výskumná správa pre výskumné centrum ALLEGRO, 2016.
[2] Jozef Bereznai. Termokinetická a hydraulická analýza prúdenia chladiva v palivovej kazete jadrového reaktora. PhD thesis, Slovak University of Technology in Bratislava, Bratislava, Slovakia, 2012. Dizertačná práca.
[3] Jaroslav Bernard. Technický experiment. České vysoké učenı́ technické v Praze, Praha, 1999.
[4] C. Sidney Burrus et al. Computer-Based Exercises for Signal Processing Using MATLAB. Prentice Hall, Upper Saddle River, NJ, 1994. ISBN 9780130132705.
[5] Brody Di Bella, Mehdi Khatamifar, and Wenxian Lin. Experimental study of flow visualisation using fluorescent dye. Flow Measurement and Instrumentation, 87:102231, 2022. ISSN 0955-5986. doi: https://doi.org/10.1016/j.flowmeasinst.2022.102231. URL https://www.sciencedirect.com/science/article/pii/S0955598622001066.
[6] John A. Dutton Institute for Teaching, College of earth Learning Exellence, PennState University, and mineral sciences. Two-dimensional plot of the spectrum of a blackbody with different temperatures, URL https://www.e-education.psu.edu/astro801/content/l3_p5.html. Accessed 18.09.2024.
[7] Eugene Hecht. Optics. Addison Wesley, 4th intern edition, 2002.
[8] J. Hermanský. Analýza prúdenia chladiva cez aktı́vnu zónu tlakovodného reaktora. PhD thesis, Slovak University of Technology in Bratislava, 2012. Dizertačná práca, ev. č. SjF-10957-69633. Praktická aplikácia experimentálnych technı́k pri realizácii komplexných experimentov
[9] Y. L. HGoody, R. M.; Yung. Atmospheric Radiation: Theoretical Basis (2nd ed.). Oxford University Press, 1989.
[10] Václav Hlaváč and Miloš Sedláček. Zpracovánı́ signálů a obrazů. Vydavatelstvı́ ČVUT, Praha, 2002. ISBN 9788021401230.
[11] ANSYS Inc. Ansys optics, optics and photonics simulation software, 2024. URL https://www.ansys.com/products/optics. Accessed 23.10.2024.
[12] B. Knizat, F. Vilagi, et al. A model of flow in a helium loop. AIP Conference Proceedings 1889, 2017.
[13] L. L. Kobzar and D. A. Oleksyuk. Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of vver 440 reactor. In Proceedings of the 16th Symposium of AER on VVER Reactor Physics and Safety, pages 22–29, Slovak Republic, 2006.
[14] A. Krylov. Krylov subspace methods for solving linear systems. Numerical Linear Algebra with Applications, 7(5):345–367, 2000. doi: 10.1002/nla.1234.
[15] AMS laboratory technologies. Condensation monodisperse aerosol generator 3475, 2024. URL https://amslt.co.za/product/condensation-monodisperse-aerosol-generator-3475/. Accessed 12.09.2024.
[16] AMS laboratory technologies. Monosize droplet generator mdg100, 2024. URL https://amslt.co.za/product/monosize-droplet-generator-mdg100/. Accessed 12.09.2024.
[17] Edward B. Magrab. Computer Integrated Experimentation. Springer, Berlin, Heidelberg, 1991. ISBN 978-3-642-95640-9.
[18] M.A. Mendez, M. Raiola, A. Masullo, S. Discetti, A. Ianiro, R. Theunissen, and J.-M. Buchlin. Pod-based background removal for particle image velocimetry. Experimental Thermal and Fluid Science, 80:181–192, 2017. ISSN 0894-1777. doi: https://doi.org/10.1016/j.expthermflusci.2016.08.21. URL https://www.sciencedirect.com/science/article/pii/S0894177716302266.
[19] MIT. Dye injection, 2024. URL https://web.mit.edu/fluids-modules/www/exper_techniques/2.Dye_Injection.pdf. Accessed 12.09.2024.
[20] NIST. Thermophysical properties of helium-4 from 0.8 to 1500 k and 0 to 2000 mpa. Technical Report NIST Technical Note 1334, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
[21] Rudolf Novák and Danuše Nováková. Základy měřenı́ a zpracovánı́ dat. ČVUT, Praha, 1999. ISBN 80-01-01825-3.
[22] National Institute of Standards and Technology. Nist data, n.d. URL https://www.nist.gov. Accessed: 2024-11-11.
[23] Boaz Porat. A Course in Digital Signal Processing. John Wiley & Sons, New York, 1997.
[24] Markus Raffel, Christian J. Kähler, Christian E. Willert, Steven T. Wereley, Fulvio Scarano, and Jürgen Kompenhans. Particle Image Velocimetry: A Practical Guide. Springer, 3rd edition, 2018. ISBN 978-3-319-68851-0. doi: 10.1007/978-3-319-68852-7.
[25] Ari Rubinsztejn. Dye injection with mariott bottle, 2024. URL https://gereshes.com/2018/04/23/flow-visualization/. Accessed 12.09.2024.
[26] D. Sage. Local normalization - filter to reduce the effect on a non-uniform illumination. Technical report, Biomedical Image Group, EPFL, Switzerland, 2011. URL http://bigwww.epfl.ch/sage/soft/localnormalization/.
[27] M. Samimy and S. K. Lele. Motion of particles with inertia in a compressible free shear layer. Physics of Fluids A: Fluid Dynamics, 3(8): 1915–1923, 08 1991. ISSN 0899-8213. doi: 10.1063/1.857921. URL https://doi.org/10.1063/1.857921.
[28] U. Shavit, R. J. Lowe, and J. V. Steinbuck. Intensity capping: a simple method to improve crosscorrelation piv results. Experiments in Fluids, 42(2):225–240, 2007. doi: 10.1007/s00348-006-0233-7. URL http://dx.doi.org/10.1007/s00348-006-0233-7.
[29] P. Siltanen. The influence of fuel assembly design changes on measured coolant enthalpy rise observed in the loviisa reactor. In Proceedings of the XVI Symposium of VMK, pages 21–25, Moscow, Russia, 1987.
[30] Jozef Skákala. Všeobecná metrológia. SVŠT, Bratislava, 1987. Praktická aplikácia experimentálnych technı́k pri realizácii komplexných experimentov
[31] Ladislav Starek. Základy inžinierskeho experimentu. SVŠT, Bratislava, 1987.
[32] Genichi Taguchi. System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. UNIPUB/Kraus International Publications, White Plains, N.Y., 1987. ISBN 9780527916213.
[33] C. Tropea, A.L. Yarin, and J.F. Foss. Springer Handbook of Experimental Fluid Mechanics. Springer Handbook of Experimental Fluid Mechanics. Springer, 2007. ISBN 9783540251415. URL https://books.google.sk/books?id=y0xDUAdQAlkC.
[34] S. Tóth and A. Aszódi. Cfd study on coolant mixing in vver-440 fuel assembly head. In Proceedings of the International Congress on Advances in Nuclear Power Plants, pages 8–12, Anaheim, California, USA, 2008. ISBN 978-1-60560-787-0.
[35] Matej Vach. Model of flow in a helium loop. PhD thesis, Slovenská technická univerzita v Bratislave, SjF ÚESZ, 2021.
[36] Matej Vach and Branislav Knı́žat. Mathematical model of unsteady flow in a natural circulation helium loop. Applied Thermal Engineering, 238:121916, 2024. ISSN 1359-4311. doi: https://doi.org/10.1016/j.applthermaleng.2023.121916. URL https://www.sciencedirect.com/science/article/pii/S1359431123019452.
[37] František Világi. Analýza prúdenia v samot’ažnej héliovej slučke. PhD thesis, Slovenská technická univerzita v Bratislave, SjF ÚESZ, 2019.
[38] František Világi, Branislav Knı́žat, Marek Mlkvik, Róbert Olšiak, Peter Mlynár, František Ridzoň, and František Urban. Leakage estimation of the high-pressure and high-temperature natural circulation helium loop. Annals of Nuclear Energy, 146:107584, 2020. ISSN 0306-4549. doi: https://doi.org/10.1016/j.anucene.2020.107584. URL https://www.sciencedirect.com/science/article/pii/S0306454920302826.
[39] František Világi, Zdenko Závodný, Peter Mlynár, František Urban, and František Ridzoň. Research of the differences between measured and real mean temperature at the outlet of the fuel cell assembly. Journal of Energy Engineering, 150(6):04014025, 2024. doi: 10.1061/(ASCE)EY.1943-7897.0000200.
[40] J. Westerweel. Digital particle image velocimetry: theory and application. PhD thesis, Delft University of Technology, Mechanical Maritime and Materials Engineering, 1993. URL http://repository.tudelft.nl/islandora/object/uuid:85455914-6629-4421-8c77-27cc44e771ed/datastream/OBJ/download.
[41] WRC Wings. Dust flow visualization: Images from rally portugal, Jun 2019. URL https://www.wrcwings.tech/2019/06/04/dust-flow-visualization-images-from-rally-portugal/. Accessed: 2024-11-15.
[42] Chris Woodford. Aerodynamics, Nov 2022. URL https://www.explainthatstuff.com/aerodynamics.html. Accessed: 2024-11-15.
[43] Y. Zhu, H. Yuan, C. Zhang, and C. Lee. Image-preprocessing method for near-wall particle image velocimetry (piv) image interrogation with very large in-plane displacement. Measurement Science and Technology, 24(12):125302, 2013. doi: 10.1088/0957-0233/24/12/125302. URL http://stacks.iop.org/0957-0233/24/i=12/a=125302.
[44] G. Zsı́ros, S. Tóth, and A. Aszódi. Analysis of coolant flow in central tube of vver-440 fuel assemblies. In Proceedings of the 21st Symposium of Atomic Energy Research on WWER Physics and Reactor Safety, pages 19–23, Dresden, Germany, 2011.
[45] Zdenko Závodný. Analýza prúdenia chladiva vo výstupnej časti fyzikálneho modelu palivovej kazety II. jadrového reaktora. Dizertačná práca, Slovenská technická univerzita v Bratislave, Strojnı́cka fakulta, Bratislava, Slovakia, 2018. Evidenčné čı́slo: SjF-104443-50330.
[46] Stanislav Ďad’o. Syntéza měřicı́ch přı́strojů. Vydavatelstvı́ ČVUT, Praha, 1997.
[47] Petr Šoch and Jiřı́ Vrátný. Experimentálnı́ metody v mechanice tekutin. CVUT, 1987.
[48] Petr Šoch and Jiřı́ Vrátný. Mechanika tekutin - experimentálnı́ metody II. CVUT, Praha, 1987.